

1981 年创刊 中文核心期刊 Scopus, CA 等数据库收录期刊 ISSN 1005-5053 CODEN HCXUFZ

航空街斜台搬

HANGKONG CAILIAO XUEBAO

JOURNAL OF AERONAUTICAL MATERIALS

第 42 卷 VOL.42 第1期 NO.1

中 国 航 空 学 会中国航发北京航空材料研究院

主办

航空材料学报

HANGKONG CAILIAO XUEBAO

双月刊 公开发行

第42卷 第1期 2022年2月

目 次

热障涂层专栏

长寿命热障涂层的剥落机理及抗剥落结构设计 ………… 张 博, 李广荣, 徐 彤, 杨冠军 (1) 航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层:回顾与展望……………… 等离子喷涂工艺参数对 GdPO4 热障涂层组织结构和结合强度的影响 ……………………… ······李浩宇,程玉贤,刘礼祥,王 璐,王 博(25) 电子束物理气相沉积 LaZrCeO 热障涂层微结构与热循环性能 ……… 牟仁德, 刘冠熙, 谢孝昌 (33) 激光重熔改性热障涂层抗 CMAS 腐蚀特性 ……… 赵长浩,杨玲伟,肖学仁,张 军,潘 伟(40) …………………………………牛少鹏,李 昕,邓春明,孙耀宁,宋进兵,王 超,黄益聪, 曾 威,戴红亮,黄 科,刘 敏(50) 研究论文 工艺参数对铝合金摩擦挤压增材组织及性能的影响……… 唐文珅,杨新岐,田超博,徐永生(59) TC4-DT 钛合金线性摩擦焊接头组织特征及其形成机制 ………………………………………………白云瑞,付 锐,李祚军,李福林,孟令超,毕中南(74) 三维五向编织复合材料的冲击压缩特性及破坏机制………………… 崔 灿,茅祓彪(81) PVA 浓度对电纺制备 ZnO 纳米纤维吸波性能的影响 ……………………………………… ······陈 丹,周影影,王 璠,王泽华,杨纪龙 (92)

责任编辑 徐永祥 曹茂生 高 磊

期刊基本参数: CN 11-3159/V*1981*b*A4*99*zh*P*¥50.00**11*2022-02

JOURNAL OF AERONAUTICAL MATERIALS

(Bimonthly)

Vol. 42 No. 1 February 2022

CONTENTS

Thermal Barrier Coatings Column

Failure mechanism and cracking-resistant design of thermal barrier coatings with long life span	
Metallic bond coats for thermally-sprayed thermal barrier coatings applied to aero-engines and industrial	(1)
gas turbines: review and prospect CHEN Weijie, SONG Peng, GAO Dong, WANG Chao Effects of air plasma spraying parameters on microstructure and bonding strength of GdPO ₄ thermal	(15)
barrier coatings <i>LI Haoyu, CHENG Yuxian, LIU Lixiang, WANG Lu, WANG Bo</i> Microstructure and thermal cycling life of LaZrCeO thermal barrier coatings deposited by electron beam	(25)
physical vapor deposition	(33)
Preparation of CeO ₂ -doped 8YSZ agglomerated powder for PS-PVD and its coating	(40)
······NIU Shaopeng, LI Xin, DENG Chunming, SUN Yaoning, SONG Jinbing, WANG Chao,	
······HUANG Yicong, ZENG Wei, DAI Hongliang, HUANG Ke, LIU Min	(50)
Research Paper	
Effects of process parameters on microstructure and properties of aluminum alloy fabricated by friction	
extrusion additive manufacturing	
	(59)
joint	(68)
BAI Yunrui, FU Rui, LI Zuojun, LI Fulin, MENG Lingchao, BI Zhongnan Impact compression characteristics and failure mechanism of 3D five-directional braided composites	(74)
Effect of PVA concentration on the microwave absorption properties of ZnO nanofibers prepared by	(81)
electrospinning CHEN Dan, ZHOU Yingying, WANG Fan, WANG Zehua, YANG Jilong	(92)

《航空材料学报》编辑委员会

	主			任	戴圣龙									
	副		È	任	陈祥宝	吴文生	李兴	、无	刘昉	絕光				
	顾	问	委	员	(以姓氏笔	画为序	₹)							
					才鸿年	叶恒	强	关	桥	张立同	柯	伟	柳百新	
					崔崑	曹春	晓	傅恒	ī志					
	玉	内	委	员	(以姓氏笔	医画为序	F)							
					丁文江	丁鹤	雁	介乃	ī奇	孔凡涛	王华	≧明	卢少微	
					卢秉恒	曲选	辉	朱矢	「寿	汤海波	何禾	川民	张永安	
					张立群	张雨	雷	李	勇	李贺军	李昉	紅	李嘉荣	
					杜 勇	杨冠	军	苏	彬	周玉	周	济	国为民	
					郑海忠	官声	凯	栗作	于平	秦发祥	聂祥	F仁	贾德昌	
					郭洪波	屠海	Ŷ	曹閒	皆梅	梁波	黄伯	云	黄陆军	
					曾小勤	曾荣	昌	焦	健	董绍明	韩雅	苦	熊艳才	
	—	₩	_		潘峰	颜	悦	薛文	て斌					
	国	际	安	员	(以字母师	! 序为 序	≠)	~	-	(~.)		~	~ . (****)	
					Jianguo Li	n(UK)		Sam	Zhar	ng (Singapore))	Steve	Shi (UK)	
	<u>+</u> -			ム白	Xiaorong Z 載マ士	Lhou (U	K)	¥ 1р-	Wah	Chung (USA)				
	土	_	<u>-</u> -) (山	艱全化	17 1	山攵	木	щ					
	创	二行百	上 加一 下	<i>1</i> 痈 4〕	岡 存	四	喗	孚	石					
	1八 /	1] E 4日 ユ	羽工	細日	工夜開 徐永祥	車革	止	主	互	立工症	上文	王派	~ 字	
	圳田	14	10 11	贝	东 水件 塞凤梅	百八	主 品	回 今日 下	4 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	十上灯	21.1	1日	卅 厶	
							ΗH	עניא	1 1.11					
	舫	ī空	材料	学	报			J	OUR	NAL OF AER	ONA	UTICA	AL MATER	IALS
(双月刊) (1981年创刊)					(Bimonthly) (Started in 19			ed in 1981)						
第4	2 卷	第	1期		2022 年 2 月					Vol.42, No.1		Febi	uary, 2022	
主	管	中	国科	学技	术协会				Super	intended by Ch	ina AS	SOCIA	TION FOR	
上 主	山赤	, 中	国航	, ⁄、 容学	全			í.	SCIEN	ICE AND TECH	NOLO	GY		
_ <u>_</u>	<i>)</i> ,	中国航空子云 中国航空北京航空社園研究院						5	Spons	ored by CHINE	SE SO	CIETY	OF	
4百 七马	11 HZ	// #	自加	/又-1u -+	いかれて1/1/1イ 	, ,		د	AERO	NAUTICS AND	ASTR	ONAU'	TICS &	
) 编辑 i	出版	《艿	机全个	オイト≒	子 扣 》 痈 挕 茚)			AECC AFRO	BEIJING INSTI NAUTICAL MA	TUTE TERIA	OF		
主	编	戴	至り	它				Edited and Published by Editorial Board of						
发	行	《兵	伉空柞	才料学	学报》编辑部			JOURNAL OF AERONAUTICAL MATERIALS				5		
地	址	北	京 81	「信箱	值44分箱,1	00095		Edited-in-Chief: Professor DAI Shenglong						
电	话	(0	010)6	52496	5277			,	Addre Falc	ess: P. O. Box 81	l – 44 , 77	Beijing	100095, Chi	na
传	直	(0	$(10)e^{-1}$	52496	5289]	Fax:	+ 0010- 024962 +8610- 624962	// 289			
XX		ر ب ل	tn. //	>(hiam co. or]	F-mai	l: hkclxb@ biam	. ac. ci	n		
r»j re	뽀		. // up	jam. p.e.					Websi	te: http://jam.	biam. a	ac. cn		
비	刷	北	- 尔科	信印	刷有限公司]	Printe	ery: Beijing Kexi	in Prin	ting Co	., Ltd.	

公开发行 <u>ISSN 1005-5053</u> <u>CN 11-3159/V</u> 本期 2022 年 2 月 1 日出版

定价:50.00元

TC4-DT 钛合金线性摩擦焊接头组织特征 及其形成机制

郭震国¹, 马铁军^{1*}, 李 菊², 李文亚¹, 周 辉¹

(1. 西北工业大学 材料学院 陕西省摩擦焊接工程技术重点实验室, 西安 710072; 2. 中国航空制造技术研究院 航空焊接与 连接技术航空科技重点实验室, 北京 100024)

摘要:研究 TC4-DT 损伤容限型钛合金线性摩擦焊 (linear friction welding, LFW) 接头的组织特征及形成机制。利用光镜和扫描电镜对接头各区域微观组织进行表征,利用显微硬度计测试接头的显微硬度分布。结果表明:接头 焊缝区 (WZ)发生动态再结晶,焊接过程中 WZ 温度超过β转变点,焊后快冷的条件下发生了β→α'及β→α 两种相 变并析出了大量 α'马氏体以及二次层片 α; TC4-DT 钛合金母材 (BM) 组织具有较高的变形抗力,使得接头形成的 热力影响区 (TMAZ) 较窄。TMAZ 内组织在强烈的热力耦合作用下拉长变形并破碎,焊后快冷的条件下析出少量 α'马氏体及大量二次层片 α; 毗邻 TMAZ 的热影响区 (HAZ) 基本保留了 BM 不同位向的 α 集束的组织特征,但受 热的影响 α 集束内 α/β 相界两侧元素相互扩散,层间β消耗,初生 α 长大; WZ 组织的细晶强化和第二相强化, TMAZ 组织的应变强化和第二相强化,以及 HAZ 内 α 相的长大使得接头上述区域显微硬度均高于 BM。 **关键词**: TC4-DT;线性摩擦焊;微观组织;形成机制 **doi**: 10.11868/j.issn.1005-5053.2021.000111

中图分类号: TG456.9 文献标识码: A

线性摩擦焊 (linear friction welding, LFW) 可实 现非轴对称复杂截面金属构件的固相连接^[1-3], 已经 成为航空发动机整体叶盘制造与修复的核心 技术^[4-5]。目前国内外围绕整体叶盘用航空钛合金 (TA19、Ti17等)LFW 开展了大量实验研究^[6-7]。以 LFW 技术的高效性及高可靠性等显著优势, 分体 制造+LFW 整体焊接可能发展成为未来航空承力 结构件制造的关键手段。中国航空制造技术研究 院已申请了利用 LFW 焊接飞机钛合金框梁的专利^[8], 并完成了某钛合金承力梁的焊接实验研究^[9]。损伤 容限型钛合金由于其低裂纹扩展速率和高断裂韧 性的特点, 在航空承力构件的制造中应用广泛。因 此, 开展损伤容限型钛合金 LFW 相关研究具有重 要意义。

TC4-DT 钛合金是我国西北有色金属研究院和 北京航空材料研究院共同研制的一款新型中强

收稿日期: 2021-07-02;修订日期: 2022-01-16

基金项目:国防基础科研计划 (JCKY2018205B026)

文章编号:1005-5053(2022)01-0068-06

($R_{\rm m}$ ≥ 825 MPa)、高韧性 ($K_{\rm IC}$ ≥ 90 MPa•m^{1/2}) 损伤 容限型钛合金^[10-11]。该合金是在 TC4 钛合金的基 础上,通过纯净化熔炼降低了C、N、O、H等间隙元 素,并通过新型β热处理工艺而获得。由于晶粒尺 寸较大,晶内呈片层集束特征,TC4-DT 钛合金具有 很高的断裂韧性,且兼具较高的强度与塑性,其性 能与美国第四代战机 F-22 上用量最大的损伤容限 型钛合金 TC4 ELI 相当^[12-13], 主要用于制造飞机大 型整体化框、梁等承力构件。目前,针对 TC4-DT 钛合金 LFW 焊接, 仅有中国航空制造技术研究 院进行了接头力学性能及焊接过程数值模拟的初 期研究。刘颖等^[14] 发现, TC4-DT 钛合金 LFW 接 头经过 700 ℃+保温 3 h 的热处理后,接头的室温和 高温抗拉强度达到母材的 97%, 室温和低温冲击性 能略高于母材, 室温低周疲劳性能与母材相当, 具 有良好的综合力学性能。金俊龙等^[15]建立了 TC4-DT 钛合金 LFW 接头三维刚塑性有限元模型,模拟 结果显示 TC4-DT 钛合金 LFW 准稳态摩擦阶段界 面温度达到了 1200 ℃。本研究旨在深入开展 TC4-DT 钛合金 LFW 接头组织特征及其形成机制研究, 为掌握该合金重要构件接头形性控制工艺奠定 基础。

通讯作者:马铁军(1972—),男,博士,副教授,主要研究方向为摩擦焊及电阻焊技术,联系地址:西安市碑林区友谊西路 127号西北工业大学友谊校区 (710072), E-mail: matiejun@nwpu.edu.cn。

69

1 实验材料及方法

1.1 实验材料

实验所用 TC4-DT 钛合金母材 (BM) 微观组织 如图 1 所示。从光镜组织 (图 1(a)) 可看出, 母材 为典型的魏氏组织, 原始β晶粒粗大, 大部分尺寸 超过 500 µm; 晶界 α 清晰完整, β 晶粒内部为不同 位向的 α 集束, 不同 α 集束尺寸存在较大差异。电 镜组织 (图 1(b)) 显示, α 集束由位向相同的大长宽 比层片 α 和层间 β 组成, 层片 α 厚度约 1.2~2 µm, 层间 β 厚度约 0.1~0.4 µm, α/β 相界平直。TC4-DT 钛合金母材的化学成分如表 1 所示。

图 1 TC4-DT 母材微观组织 (a) OM; (b) SEM Fig. 1 BM microstructure of TC4-DT (a) OM; (b) SEM

表 1 TC4-DT 钛合金化学成分(质量分数/%) Table 1 Chemical composition of TC4-DT(mass fraction/%)

Al	V	С	Fe	0	N	Н	Ti
6.32	4.25	0.02	0.015	0.11	0.003	0.002	Bal

1.2 实验方法

焊接实验在中国航空制造技术研究院自行研制的 15 t LFW 焊机上进行,焊接面面积为 25 mm× 12.5 mm。焊接参数如表 2 所示。

	表 2	焊接工艺参数
Table 2	Wel	ding process parameters

Friction	Oscillation	Oscillation	Preset axial	Forging
pressure/	amplitude/	frequency/	shortening/	pressure/
MDo	mm	Ц7	mm	MDa
IVIF a	111111	11Z	111111	Ivii a

焊后切割金相试样, 打磨抛光后, 利用 Kroll 试 剂 (0.5% HF+1.5% HNO₃ +2% HCl+96% H₂O)腐 蚀, 随后在 PMG3 光学显微镜及 G4 CX 型聚焦离 子/电子双束电镜下观察接头宏、微观组织特征。 沿垂直于焊缝方向进行接头显微硬度测试, 步长为 100 μm, 载荷为 300 g, 保压时间为 15 s。

2 结果与讨论

2.1 接头光镜组织特征

图 2 为接头光镜组织照片。由接头纵向剖面 低倍组织 (图 2(a))可看出,接头中心到母材 (BM) 呈现出不同组织特点。接头中心约 300 μm 范围内 组织细密均匀,为焊缝区 (WZ);靠近 WZ 约 300 μm 范围内组织发生明显变形,该区域为热力 影响区 (TMAZ); TMAZ 之外约 1000 μm 范围内组 织未发生变形,形貌与 BM 基本相似,但可见浅色 组织显著增多,其为热影响区 (HAZ)。

图 2(b) 为 WZ 放大组织, 其与 BM 组织完全不同, 晶粒明显细化, 表明 WZ 在 LFW 过程强烈的热力耦合作用下发生了动态再结晶。另外, 由于 LFW 过程周期性挤出高温塑性金属带走大量的 热, WZ 与周围母材形成很高的温度梯度, 焊后冷却速率快导致 WZ 析出大量 α'马氏体, 光镜下呈现 为交错的短黑线。

图 2(c) 为 TMAZ 放大组织。与等轴和双态 TC4 钛合金 LFW 接头 TMAZ 在较大宽度范围内 由不同程度变形晶粒形成典型流线形貌的组织特 征相比, TC4-DT 钛合金 LFW 接头 TMAZ 宽度明 显较窄, 在基本小于 BM 晶粒直径均值范围内受强 烈梯度热-力影响形成如下特征:靠近 WZ 区域,组 织破碎和变形非常严重,已完全观察不到原始晶界 及层片组织形貌,且 α/β 相界已无法辨认;靠近 HAZ 区域,可见部分 α 集束在热力耦合作用下发 生了明显弯折变形。上述的 TMAZ 特征的形成, 一方面在于 LFW 局部大变形的工艺特点使 TMAZ 窄小区域内受到强烈的热力耦合作用;另一方面在 于 TC4-DT 优异的损伤容限性能,魏氏组织的大尺 寸晶粒及不同位向的 α 集束大幅提高了组织的抗

变形能力。正是因为这样的 TMAZ 特征, 毗邻该 区域的母材组织仅受到热的影响形成了钛合金 LFW 接头不常见的 HAZ。由 HAZ 放大组织(图 2(d)) 可看出,该区部分 α 集束内层片 α/β 相界变得模糊 不清, 与 BM 相比浅色区域明显增多,说明显微组 织发生了一定程度的变化。

2.2 接头电镜组织特征

图 3 为接头不同分区扫描电镜组织。在 WZ(图 3(a))中可观察到大量 α'马氏体,部分呈条 块状,部分呈针状。该组织特征表明 LFW 过程中 WZ 超过了 β 转变温度 (970 °C)^[14],并发生了充分 的 α→β 转变,在焊后快速的冷却过程中高温 β 发 生无扩散型相变形成大量 α'马氏体。此外, WZ 还 可观察到许多细小的二次层片状 α。Lu 等^[12]在研 究 TC4-DT 钛合金电子束焊时发现,接头热影响区 温度超过 β 转变温度发生了 β→α'转变,还由于该 区域温度超过马氏体转变温度发生了 β→α 扩散型 转变,生成了许多细小的层片状 α。因此本研究认 为, TC4-DT 钛合金的 LFW 过程中 WZ 也发生了 $\beta \rightarrow \alpha'$ 及 $\beta \rightarrow \alpha$ 两种相变。WZ 中针状和条块状 α'以 及二次层片状 α 的大量析出掩盖了再结晶 β 晶粒 的晶界,使得 WZ 难以观察到完整清晰的再结晶 晶粒。

靠近 WZ 的 TMAZ 扫描电镜组织如图 3(b) 所 示,组织沿线性摩擦方向破碎变形严重,已经看不 出母材中α集束的组织特征。该区域可观察到少 量针状α'马氏体以及许多二次层片状α,是由于焊 接过程中邻近WZ 温度也超过了β转变温度并发 生了β→α'及β→α转变。靠近 HAZ 的 TMAZ 电 镜组织如图 3(c) 所示,可以发现该区域保留了大致 的原始母材层片组织特征,热力耦合的影响下α集 束明显弯折变形,α/β相界不再平直。此外,还可以 看出层间β内大量析出二次层片状α而无α'马氏 体,表明该区域温度低于β转变温度。

与 BM 组织对比可以发现, HAZ(图 3(d))仍 基本保留了母材原有的α集束特征, 但一些α集束 内的层间β含量明显减少。这是由于 HAZ 受到摩 擦界面传递过来的热量影响, 加速了元素扩散过

图 3 接头不同区域电镜组织 (a) WZ; (b) TMAZ 近 WZ; (c) TMAZ 近 HAZ; (d) HAZ Fig. 3 SEM microstructure of the joint (a) WZ; (b) TMAZ near WZ; (c) TMAZ near HAZ; (d) HAZ

程,一些 α 相在 α/β 相界上通过元素扩散的方式消 耗层间 β 进行长大^[16],这也是光镜下 HAZ 浅色区 域明显增多的原因。

2.3 接头显微硬度

接头垂直于焊缝方向显微硬度的测试结果如 图 4 所示,显微硬度值整体呈中间和两侧较低的 "M"形分布。WZ 平均显微硬度高于母材,约 325HV 左右,是由于 WZ 晶粒细小,且析出大量 α'马氏体及二次层片 α,存在细晶强化及第二相强 化 作 用。TMAZ 平均显微硬度值最高,达到 350HV,是因为 TMAZ 内层片组织发生强烈变形引 起形变强化,焊后冷却过程中析出了少量 α'马氏体 及大量细小的二次层片 α,存在第二相强化。相比

图 4 接头显微硬度分布 Fig. 4 Microhardness distribution of the joint

BM, HAZ 内层间 β 消耗, 层片 α 长大粗化。由于 β 相为体心立方结构, 其滑移系较多, 显微硬度较 低; α 相为密排六方结构, 滑移系较少, 显微硬度较 高。因此, HAZ 整体显微硬度略高于 BM, 且越接 近 TMAZ 由于层间 β 消耗程度越大, 显微硬度越 高。由于 TC4-DT 母材不同 α 集束内部层片 α 相 尺寸与位向存在差异, 导致不同 α 集束显微硬度值 也存在差异。HAZ 组织与 BM 基本相似, 均由尺 寸与位向不同的 α 集束组成, 因此 HAZ 和 BM 显 微硬度值呈明显的上下跳动变化。

3 结论

(1) TC4-DT 钛合金 LFW 接头 WZ 发生了动态 再结晶。焊接过程中 WZ 温度超过了 β 转变点, 焊 后快冷的条件下发生了 $\beta \rightarrow \alpha' 及 \beta \rightarrow \alpha$ 两种相变, 析 出了条块状和针状 α' 马氏体以及二次层片 α 。细晶 强化及第二相强化的作用使 WZ 显微硬度高于 BM, 达到 325HV。

(2) 由于 TC4-DT 钛合金优异的损伤容限性 能, 焊接过程中接头组织表现出了较高的变形抗 力, 最终形成了较窄的 TMAZ。TMAZ 内组织变形 严重, α集束弯折甚至破碎, 此外还在冷却过程中 析出了少量 α'马氏体及大量二次层片 α。TMAZ 组织的形变强化以及第二相强化使其显微硬度最 高,达到 350HV。

(3) 由于 TMAZ 较窄, 毗邻该区域的 BM 组织 仅受到热的影响形成了钛合金 LFW 接头不常见 的 HAZ。HAZ 保留了 BM 不同位向的 α 集束的组 织特征, 但在热的作用下 α 集束内 α/β 相界两侧元 素相互扩散, 层间 β 消耗, 初生 α 长大, 导致该区域 显微硬度略高于 BM。

参考文献:

- [1] MCANDREW A R, COLEGROVE P A, BUHR C, et al. A literature review of Ti-6Al-4V linear friction welding
 [J]. Progress in Materials Science, 2018, 92: 225-257.
- [2] LI W Y, VAIRIS A, PREUSS M, et al. Linear and rotary friction welding review[J]. International Materials Reviews, 2016, 61(2): 71-100.
- [3] MA T J, CHEN X, LI W Y, et al. Microstructure and mechanical property of linear friction welded nickelbased superalloy joint[J]. Materials and Design, 2016, 89: 85-93.
- [4] VAIRIS A, FROST M. High frequency linear friction welding of a titanium alloy[J]. Wear, 1998, 217: 117-131.
- [5] GUO Z G, MA T J, LI W Y, *et al.* Intergrowth bonding mechanism and mechanical property of linear friction welded dissimilar near-alpha to near-beta titanium alloy joint[J]. Advanced Engineering Materials, 2021, 23(5): 2001479.
- [6] 郭震国,马铁军,李文亚,等.TA19/TB2 异质钛合金线 性摩擦焊试验研究 [J]. 精密成形工程,2019,11(6):8-13.

(GUO Z G, MA T J, LI W Y, *et al.* Linear friction welded dissimilar joint of TA19 and TB2 titanium alloys[J]. Journal of Netshape Forming Engineering, 2019, 11(6): 8-13.)

- [7] 李晓红,张彦华,李赞,等. 热处理温度对 TC17(α+β)/TC17(β) 钛合金线性摩擦焊接头组织及力学性能的影响
 [J]. 材料工程, 2020, 48(1): 115-120.
 (LI X H, ZHANG Y H, LI Z, *et al.* Effect of heat treatment temperatures on microstructure and mechanical property of linear friction welded joints of titanium alloy TC17(α+β)/TC17(β)[J]. Journal of Materials Engineering, 2020, 48(1): 115-120.)
- [8] 李志强, 刘宝胜, 吴为, 等. 一种飞机钛合金框梁类零件 制造方法: CN 104443426A[P]. 2015-3-25.
 (LI Z Q, LIU B S, WU W, *et al.* Method for manufacturing aircraft titanium alloy frame beam parts: CN

104443426 A[P]. 2015-3-25.)

[9] 许平,毕世权,苏智星,等.TA15 钛合金线性摩擦焊在 飞机结构上的应用研究 [J]. 航空制造技术, 2015(17): 69-72.

(XU P, BI S Q, SU Z X, *et al.* Application study on linear-friction welding of TA15 titanium alloy applied to aircraft structure[J]. Aeronautical Manufacturing Technology, 2015(17): 69-72.)

- [10] PENG X N, GUO H Z, WANG T, *et al.* Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy[J]. Materials Science and Engineering: A, 2012, 553: 55-63.
- [11] 朱知寿, 王新南, 童路, 等. 航空用损伤容限型钛合金 研究与应用 [J]. 中国材料进展, 2010, 29(5): 14-17.
 (ZHU Z S, WANG X N, TONG L, *et al.* Research and application of damage tolerance titanium alloys for aeronautical use[J]. Materials China, 2010, 29(5): 14-17.)
- [12] LU W, SHI Y W, LEI Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy[J]. Materials and Design, 2012, 34: 509-525.
- [13] 郭 萍, 赵永庆, 曾卫东, 等. 两相区热处理对 TC4-DT 钛 合金断裂韧性的影响 [J]. 稀有金属材料与工程, 2018, 47(4): 1221-1225.
 (GUO P, ZHAO Y Q, ZENG W D, *et al.* Effect of heat treatment in α+β zone on fracture toughness of TC4-DT titanium alloy[J]. Rare Metal Materials and Engineering, 2018, 47(4): 1221-1225.)
- [14] 刘颖,张传臣,张田仓. TC4-DT 钛合金线性摩擦焊接头 组织和力学性能分析 [J]. 航空制造技术, 2017, (22): 83-86.

(LIU Y, ZHANG C C, ZHANG T C. Microstructure and mechanical properties of LFW joint for TC4-DT titanium alloy[J]. Aeronautical Manufacturing Technology, 2017, (22): 83-86.)

[15]金俊龙,郭德伦,陶军,等.TC4-DT 钛合金线性摩擦焊 过程三维数值模拟 [J]. 航空制造技术,2014,(16):61-64.

(JIN J L, GUO D L, TAO J, *et al.* 3D numerical simulation of linear friction welding of TC4-DT titanium alloy[J]. Aeronautical Manufacturing Technology, 2014, (16): 61-64.)

[16] 郭萍. TC4-DT 钛合金损伤行为研究 [D]. 西安: 西北工 业大学, 2015.

(GUO P. Research on damage behaviors of TC4-DT titanium alloys[D]. Xi 'an: Northwestern Polytechnical University, 2015.)